Angewandte mand

Supporting Information

trans-Hydrogenation: Application to a Concise and Scalable Synthesis of Brefeldin A**
Michael Fuchs and Alois Fürstner*

ange_201411618_sm_miscellaneous_information.pdf

TOTAL SYNTHESES OF BREFELDIN A

Autor (*)	Year ${ }^{[a]}$	Ref.	shown substrate ${ }^{[b]}$	"real" substrate ${ }^{[c]}$	macrocyclization		Steps ($\Sigma)^{[d]}$	Amount ${ }^{[\mathrm{e}]}$	Comments ${ }^{[f]}$
					method	yield (\%)			
Corey	1976	1		cyclopentadiene	lactonization	nr	≈ 22	nr	racemic
Bartlett	1978	2	$\int_{\text {[, }, \mathrm{COOH}}^{\mathrm{COOH}}$		lactonization	37	≈ 17	1 mg	racemic Birch-reduction ($\Delta^{10,11}$)
Kitahara, Mori	1979	3		mannitol \& glutamic acid	lactonization	42	≈ 31	2.9 mg	Birch-reduction ($\Delta^{10,11}$)
Greene	1980	4,5		cyclopentadiene	lactonization	$70^{[h]}$	≈ 18	16.1 mg	
Winterfeldt	1980	6		cyclopentadiene (?)	lactonization	$n \mathrm{r}$	> 15	$n \mathrm{r}$	racemic
Yamaguchi	1981	7	γ^{COOH}		lactonization	$94^{[\mathrm{h}]}$	≈ 21	nr	racemic
Gais	1984	8			lactonization	74	≈ 24	$n \mathrm{r}$	Birch-reduction ($\Delta^{10,11}$)
Corey	1990	9		cyclopentadiene	lactonization ${ }^{[g]}$	nr	≈ 17	$n \mathrm{r}$	
Takano	1990	10			lactonization	83	≈ 25	nr	Birch-reduction ($\Delta^{10,11}$)
Taber	1991	11			lactonization	$21^{[\text {[]] }}$	≈ 23	1.1 mg	
Nokami	1991	12		cyclopentadiene	lactonization	80	≈ 16	$n \mathrm{r}$	
Solladié	1993	13	TPS	bis-(+)-menthyl	lactonization	50	≈ 38	4.2 mg	
Kajiwara	1994	14			lactonization	$24^{[i]}$	≈ 22	nr	Birch-reduction ($\Delta^{10,11}$)

[a] first appearance; "variants" are considered under one entry if the overall strategy is unchanged
[b] substrate with which the sequence described in the cited reference starts
[c] compound from which the substrate shown in the publication has been made according to the cited literature; not in all cases this may be the actual point of departure; (?) indicates cases, where the real starting material is not clear (best guess by the present authors)
[d] the step count is not necessarily unambiguous
[e] amount of brefeldin A shown in the Experimental Part of the publication
[f] strategic elements related to the present synthesis are indicated in blue
[g] also reports an attempted but unsuccessful macrocyclization via intramolecular 1,4-addition
[h] yield of a mixture of diastereomers
[i] yield over more than one step; the yield of the macrocyclization itself is not specified
$\mathrm{nr}=$ not reported; HWE = Horner-Wadsworth-Emmons olefination; RCM = ring closing alkene metathesis

FORMAL TOTAL SYNTHESES OF BREFELDIN A

Autor (*)	Year ${ }^{[a]}$	Ref.	shown Substrate ${ }^{[b]}$	"real" substrate ${ }^{[c]}$	Steps ($\Sigma)^{[d]}$	Comments
Ohrui	1980	24		glucose	>> 20	intercepts ref. 7
Winterfeldt	1981	25		cyclopentadiene (?)		racemic, HWE @ $\Delta^{2,3}$ (yield not reported) intercepts ref. 6
Greene	1982	5			>> 13	racemic; intercepts ref. 1
Isoe	1985	26	MOMO		≈ 18	intercepts ref. 2
Sakai	1985	27	3		>> 20	intercepts ref. 3
Trost	1986	28	0	mannitol	≈ 20	intercepts ref. 1
Nakai	1995	29			≈ 20	no route established at the time is intercepted
Greene	1995	30			≈ 18	intercepts ref. 5
Kobayashi	1996	31		cyclopentadiene (?)	≈ 15	intercepts ref. 2

Mioskowski	1999	32		propargyl alcohol (?)	> 20	intercepts ref. 8a
Kim	2002	33		tri-O-acetyl-D-glucal	≈ 27	intramol. nitrile-oxide cycloadd. (84\%) Birch-reduction ($\Delta^{10,11}$) intercepts ref. 19
Kim	2002	33		tri-O-acetyl-D-glucal	≈ 22	RCM @ $\Delta^{10,11}(42 \%, \mathrm{E}: \mathrm{Z}=2.2: 1)$; intercepts ref. 19
Helmchen	2006	34	人 отврр	2-buten-1,4-diol	≈ 19	intercepts ref. 11
Zercher	2007	35		malic acid	≈ 17	RCM @ $\Delta^{10,11}(64 \%, \mathrm{E}: Z=3.5: 1)$ \& ring expansion intercepts ref. 19
other		36				

[a] first appearance; "variants" are considered under one entry if the overall strategy is unchanged
[b] substrate with which the sequence described in the cited reference starts
[c] compound from which the substrate shown in the publication has been made according to the cited literature; not in all cases this may be the actual point of departure; (?) indicates cases, where the real starting material is not clear (best guess by the present authors)
[d] projected number of steps towards the final product if the synthesis were completed according to the intercepted route; the step count is not necessarily unambiguous

TOTAL AND FORMAL SYNTHESES OF BREFELDIN C

Autor (*)	Year ${ }^{[a]}$	Ref.	shown Substrate ${ }^{[b]}$	"real" substrate ${ }^{[c]}$	Macrocyclization (yield \%)	Steps ($\Sigma)^{[d]}$	Amount ${ }^{[\mathrm{e}]}$	Comments ${ }^{[f]}$
Schreiber	1988	37			NHK (60\%)	≈ 16	$\approx 5 \mathrm{mg}$	
Takano	1989	38			lactonization (85\%)	≈ 22	$n \mathrm{r}$	Birch-reduction ($\Delta^{10,11}$)
Guingant	2005	39			lactonization (79\%)	≈ 18	50 mg	
Tsunoda	2011	40			lactonization (89\%)	≈ 23	$n \mathrm{r}$	

[a] first appearance; "variants" are considered under one entry if the overall strategy is unchanged
[b] substrate with which the sequence described in the cited reference starts
[c] compound from which the substrate shown in the publication has been made according to the cited literature; not in all cases this may be the actual point of departure; (?) indicates cases, where the real starting material is not clear (best guess by the present authors)
[d] the step count is not necessarily unambiguous
[e] amount of brefeldin A shown in the Experimental Part
[f] strategic elements related to the present synthesis are indicated in blue
$\mathrm{nr}=$ not reported; NHK = Nozaki-Hiyama-Kishi reaction

A SELECTION OF SIGNIFICANT ANALOGUES

Autor (*)
Helmchen 2011 (via partial synthesis)
[a] modified site and/or modification relative to the natural product shown in red
a) E. J. Corey, R. H. Wollenberg, Tetrahedron Lett. 1976, 4705-4708; b) for a modification, see: E. J. Corey, R. H. Wollenberg, D. R. Williams, Tetrahedron Lett. 1977, 2243-2246. P. A. Bartlett, F. R. Green, J. Am. Chem. Soc. 1978, 100, 4858-4865.
a) T. Kitahara, K. Mori, M. Matsui, Tetrahedron Lett. 1979, 20, 3021-3024; b) T. Kitahara, K. Mori, Tetrahedron 1984, 40, 2935-2944.
A. E. Greene, C. Le Drian, P. Crabbé, J. Am. Chem. Soc. 1980, 102, 7583-7584.
C. Le Drian, A. E. Greene, J. Am. Chem. Soc. 1982, 104, 5473-5483.
a) Y. Köksal, P. Raddatz, E. Winterfeldt, Angew. Chem. 1980, 92, 486-487; Angew. Chem. Int. Ed. Engl. 1980, 19, 472-473; b) Y. Köksal, P. Raddatz, E. Winterfeldt, Liebigs Ann. Chem. 1984, 450-461.
M. Honda, K. Hirata, H. Sueoka, T. Katsuki, M. Yamaguchi, Tetrahedron Lett. 1981, 22, 26792682.
a) H.-J. Gais, T. Lied, Angew. Chem. 1984, 96, 143-145; Angew. Chem. Int. Ed. Engl. 1984, 23, 145-146; b) H.-J. Gais, K. L. Lukas, Angew. Chem. 1984, 96, 140-141; Angew. Chem. Int. Ed. Engl. 1984, 23, 142-143.
E. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 7555-7558.
S. Hatakeyama, K. Sugawara, M. Kawamura, S. Takano, Synlett 1990, 691-693.
D. F. Taber, L. J. Silverberg, E. D. Robinson, J. Am. Chem. Soc. 1991, 113, 6639-6645.
J. Nokami, M. Ohkura, Y. Dan-Oh, Y. Sakamoto, Tetrahedron Lett. 1991, 32, 2409-2412.
G. Solladié, O. Lohse, J. Org. Chem. 1993, 58, 4555-4563.
H. Miyaoka, M. Kajiwara, J. Chem. Soc. Chem. Commun. 1994, 483-484.
a) G. Casy, G. Gorins, R. McCague, H. F. Olivo, S. M. Roberts, J. Chem. Soc. Chem. Commun. 1994, 1085-1086; b) A. J. Carnell, G. Casy, G. Gorins, A. Kompany-Saeid, R. McCague, H. F. Olivo, S. M. Roberts, A. J. Willetts, J. Chem. Soc. Perkin Trans. I 1994, 3431-3439.
R. K. Haynes, W. W.-L Lam, L.-L. Yeung, I. D. Williams, A. C. Ridley, S. M. Starling, S. C. Vonwiller, T. W. Hambley, P. Lelandais, J. Org. Chem. 1997, 62, 4552-4553.
a) Y.-G. Suh, J.-K. Jung, B.-C. Suh, Y.-C. Lee, S.-A. Kim, Tetrahedron Lett. 1998, 39, 5377-5380; b) Y.-G. Suh, J.-K. Jung, S.-Y. Seo, K.-H. Min, D.-Y. Shin, Y.-S. Lee, S.-H. Kim, H.-J. Park, J. Org. Chem. 2002, 67, 4127-4137; c) Y.-G. Suh, S.-Y. Seo, J.-K. Jung, O.-H. Park, R.-O. Jeon, Tetrahedron Lett. 2001, 42, 1691-1694.
Y. Wang, D. Romo, Org. Lett. 2002, 4, 3231-3234.
D. Kim, J. Lee, P. J. Shim, J. I. Lim, H. Jo, S. Kim, J. Org. Chem. 2002, 67, 764-771.
a) B. M. Trost, M. L. Crawley, J. Am. Chem. Soc. 2002, 124, 9328-9329; b) B. M. Trost, M. L. Crawley, Chem. Eur. J. 2004, 10, 2237-2252.
a) Y. Wu, J. Gao, Org. Lett. 2008, 10, 1533-1536; for a variant, see: b) Y. Wu, X. Shen, Y.-Q. Yang, Q. Hu, J.-H. Huang, J. Org. Chem. 2004, 69, 3857-3865; c) Y. Wu, X. Shen, Y.-Q. Yang, Q. Hu, J.-H. Huang, Tetrahedron Lett. 2004, 45, 199-202.
S.-Y. Seo, J.-K. Jung, S.-M. Paek, Y.-S. Lee, S.-H. Kim, Y.-G. Suh, Tetrahedron Lett. 2006, 47, 6527-6539.
M.-Y. Kim, H. Kim, J. Tae, Synlett 2009, 1303-1306.
H. Ohrui, H. Kuzuhara, Agric. Biol. Chem. 1980, 44, 907-912.
P. Raddatz, E. Winterfeldt, Angew. Chem. 1981, 93, 281-282; Angew. Chem. Int. Ed. Engl. 1981, 20, 286-287.
K. Nakatani, S. Isoe, Tetrahedron Lett. 1985, 26, 2209-2212.
K. Ueno, H. Suemune, S. Saeki, K. Sakai, Chem. Pharm. Bull. 1985, 33, 4021-4025.
B. M. Trost, J. Lynch, P. Renaut, D. H. Steinman, J. Am. Chem. Soc. 1986, 108, 284-291.
K. Tomooka, K. Ishikawa, T. Nakai, Synlett 1995, 901-902.
V. Bernardes, N. Kann, A. Riera, A. Moyano, M. A. Pericas, A. E. Greene, J. Org. Chem. 1995, 60, 6670-6671.
Y. Kobayashi, K. Watatani, Y. Kikori, R. Mizojiri, Tetrahedron Lett. 1996, 37, 6125-6128.
P. Ducray, B. Rousseau, C. Mioskowski, J. Org. Chem. 1999, 64, 3800-3801.
D. Kim, J. Lee, P. J. Shim, J. I. Lim, T. Doi, S. Kim, J. Org. Chem. 2002, 67, 772-781.
T. Hübscher, G. Helmchen, Synlett 2006, 1323-1326.
W. Lin, C. K. Zercher, J. Org. Chem. 2007, 72, 4390-4395.

For other studies towards the brefeldins, see: a) D. B. Ramachary, Y. V. Reddy, J. Org. Chem. 2010, 75, 74-85; b) D. P. Curran, D. Scholz, Monatsh. Chem. 1977, 108, 1401-1411; c) T. Livinghouse, R. V. Stevens, J. Chem. Soc. Chem. Commun. 1978, 754-756; d) R. Baker, R. B. Keen, M. D. Morris, R. W. Turner, J. Chem. Soc. Chem. Commun. 1984, 987-988; e) K. Nakamura, T. Kitayama, Y. Inoue, A. Ohno, Bull. Chem. Soc. Jpn. 1990, 63, 91-96.
S. L. Schreiber, H. V. Meyers, J. Am. Chem. Soc. 1988, 110, 5198-5200.
S. Hatakeyama, K. Osanai, H. Numata, S. Takano, Tetrahedron Lett. 1989, 30, 4845-4848.
a) S. Archambaud, F. Legrand, K. Aphecetche-Julienne, S. Collet, A. Guingant, M. Evain, Eur. J. Org. Chem. 2010, 1364-1380; b) S. Archambaud, K. Aphecetche-Julienne, A. Guingant, Synlett 2005, 139-143; c) F. Legrand, S. Archambaud, S. Collet, K. Aphecetche-Julienne, A. Guingant, M. Evain, Synlett 2008, 389-393.
M. Inai, T. Nishii, S. Mukoujima, T. Esumi, H. Kaku, K. Tominaga, H. Abe, M. Horikawa, T. Tsunoda, Synlett 2011, 1459-1461.
a) J.-W. Zhu, H. Nagasawa, F. Nagura, S. B. Mohamad, Y. Uto, K. Ohkura, H. Hori, Bioorg. Med. Chem. 2000, 8, 455-463; b) J.-W. Zhu, H. Hori, H. Nojiri, T. Tsukuda, Z. Taira, Bioorg. Med. Chem. Lett. 1997, 7, 139-144.
A. B. Argade, R. Devraj, J. A. Vroman, R. D. Haugwitz, M. Hollingshead, M. Cushman, J. Med. Chem. 1998, 41, 3337-3346.
J. Gao, Y.-X. Huang, Y. Wu, Tetrahedron 2008, 64, 11105-11109.
S. Förster, G. Helmchen, Synlett 2008, 831-836.
S. Förster, E. Persch, O. Tverskoy, F. Rominger, G. Helmchen, C. Klein, B. Gönen, B. Brügger, Eur. J. Org. Chem. 2011, 878-891.
K. Seehafer, F. Rominger, G. Helmchen, M. Langhans, D. G. Robinson, B. Özata, B. Brügger, J. R. P. M. Strating, F. J. M. van Kuppeveld, C. D. Klein, J. Med. Chem. 2013, 56, 5872-5884.

Figure S-1. Structure of compound $\mathbf{8}$ in the solid state; anisotropic displacement parameters are drawn at the 50\% probability level, hydrogen atoms are omitted for clarity; brefeldin numbering scheme (CCDC-1036054)

X-ray Crystal Structure Analysis of Compound 8: $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}, M_{r}=142.15 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.32 \times 0.19 \times 0.12 \mathrm{~mm}$, monoclinic, space group $P 2_{1}, a=5.3098(4) \AA, b=10.2790(7) \AA, c=$ $12.3060(9) \AA, \beta=97.493(4)^{\circ}, V=665.92(8) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.418 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA$, $\mu\left(C u-K_{\alpha}\right)=0.930 \mathrm{~mm}^{-1}$, Empirical absorption correction ($\mathrm{T}_{\min }=0.77, \mathrm{~T}_{\max }=0.90$), Bruker AXS X8 Proteum diffractometer, $3.623<\theta<66.290^{\circ}$, 14753 measured reflections, 2300 independent reflections, 2182 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by fullmatrix least-squares against F^{2} to $R_{1}=0.030[I>2 \sigma(I)], w R_{2}=0.078,183$ parameters, H atoms riding, absolute structure parameter $=0.0(2), S=1.040$, residual electron density $0.2 /-0.2$ e \AA^{-3}.

Figure S-2. Structure of adduct 12 in the solid state; anisotropic displacement parameters are drawn at the 50% probability level, hydrogen atoms are omitted for clarity (CCDC-1036055)

X-ray Crystal Structure Analysis of Compound 12: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}, M_{r}=209.06 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.21 \times 0.20 \times 0.17 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=8.0685(5) \AA$,,$b=9.3727$ (5) $\AA, c=11.7206(7) \AA, V=886.35(9) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.567 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=$ $6.234 \mathrm{~mm}^{-1}$, Empirical absorption correction ($T_{\min }=0.34, T_{\max }=0.49$), Bruker AXS X8 Proteum
diffractometer, $6.045<\theta<67.622^{\circ}$, 40841 measured reflections, 1594 independent reflections, 1587 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.025[I>2 \sigma(I)], w R_{2}=0.061,109$ parameters, absolute structure parameter $=$ $0.012(5), \mathrm{H}$ atoms riding, $S=1.098$, residual electron density $0.1 /-0.3$ e \AA^{-3}.

Figure S-3. Structure of cycloalkyne 20 in the solid state in two different orientations; anisotropic displacement parameters are drawn at the 50\% probability level; except for H 3 shown in the top projection, all hydrogen atoms are omitted for clarity (CCDC-1036056)

X-ray Crystal Structure Analysis of Compound 20: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}, M_{r}=278.33 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.21 \times 0.11 \times 0.07 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=7.4004(2) \AA, b=$ $10.6316(3) \AA, c=18.5415(5) \AA, V=1458.81(7) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.267 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA$, $\mu\left(C u-K_{\alpha}\right)=0.732 \mathrm{~mm}^{-1}$, Semi-empirical absorption correction ($\mathrm{T}_{\min }=0.87, \mathrm{~T}_{\max }=0.95$), Bruker AXS X8 Proteum diffractometer, $4.770<\theta<67.815^{\circ}$, 65420 measured reflections, 2618 independent reflections, 2541 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by fullmatrix least-squares against F^{2} to $R_{1}=0.032[I>2 \sigma(I)], w R_{2}=0.078,190$ parameters, absolute structure parameter $=0.07(6), \mathrm{H}$ atoms riding, $S=1.108$, residual electron density $0.1 /-0.2$ e \AA^{-3}.

Figure S-4. Structure of brefeldin $A(1)$ in the solid state; anisotropic displacement parameters are drawn at the 50\% probability level, hydrogen atoms are omitted for clarity (CCDC- 1036057) ${ }^{1}$

X-ray Crystal Structure Analysis of 9022: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}, M_{r}=280.35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.187 \times 0.172 \times 0.040 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=7.3601(3) \AA, b=10.8657$ (5) \AA, $c=$ 18.7697(9) Å, $V=1501.06(12) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.241 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=$ $0.712 \mathrm{~mm}^{-1}$, Empirical absorption correction ($\mathrm{T}_{\text {min }}=0.90, \mathrm{~T}_{\text {max }}=0.97$), Bruker AXS X8 Proteum diffractometer, $4.702<\theta<67.536^{\circ}, 62428$ measured reflections, 2704 independent reflections, 2644 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.030[I>2 \sigma(I)], w R_{2}=0.072,198$ parameters, absolute structure parameter $=$ $0.00(6), \mathrm{H}$ atoms riding, $S=1.096$, residual electron density $0.1 /-0.2$ e \AA^{-3}.

CCDC-1036054 (8), CCDC-1036055 (12), CCDC-1036056 (20) and CCDC-1036057 (1) contain the supporting crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

[^0]General. Unless stated otherwise, all reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{Mg} /$ anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane, toluene (Na / K), dioxane, $\mathrm{DMF}, \mathrm{MeCN}, \mathrm{NEt}_{3}$ and pyridine were dried by an adsorbtion solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254); Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker DPX 300, AV400, AV500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl_{3} : δ_{C} $\equiv 77.16 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm} ;\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}: \delta_{\mathrm{C}} \equiv 49.00 \mathrm{ppm}$; residual $\mathrm{CHD}_{2} \mathrm{OD}$ in $\left[D_{4}\right]$-methanol: $\delta_{H} \equiv 3.31 \mathrm{ppm} ;\left[\mathrm{D}_{6}\right]$-DMSO: $\delta_{\mathrm{C}} \equiv 39.52 \mathrm{ppm} ;$ residual $\left[\mathrm{D}_{5}\right]$-DMSO: $\delta_{\mathrm{H}} \equiv 2.50 \mathrm{ppm}$; IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (ũ) in cm^{-1}; MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Optical rotations ($[\alpha]_{D}^{20}$) were measured with a Perkin-Elmer Model 343 polarimeter. Unless stated otherwise, all commercially available compounds (Alfa Aesar, Aldrich, Fluka, Lancaster) were used as received. Complex $\mathbf{2 6}^{[1]}$ and $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}{ }^{[2]}$ were prepared according to literature procedures.
(1R,2S)-Diethyl cyclohex-4-ene-1,2-dicarboxylate (3). ${ }^{[3]} \mathrm{H}_{2} \mathrm{SO}_{4}$ (conc., $25 \mathrm{~mL}, 469 \mathrm{mmol}$) was added to a solution of cis-1,2,3,6-tetrahydrophthalic anhydride ($60.0 \mathrm{~g}, 394 \mathrm{mmol}$) in MeOH
 $(600 \mathrm{~mL})$ and the resulting mixture was stirred overnight at reflux temperature. The mixture was then concentrated under reduced pressure and the remaining oil diluted with water (100 mL). Solid NaHCO_{3} was carefully added until the pH was neutral. The aqueous phase was extracted with tert-butyl methyl ether ($4 \times 100 \mathrm{~mL}$), and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give product 3 as a clear oil ($75.0 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.65(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=5.3,2 \mathrm{H}), 2.53(\mathrm{dd}, J=5.3,16.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ $(\mathrm{dd}, J=5.3,16.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.8,125.2,51.9,39.8,25.8$; IR (film) $\tilde{u}=$ 3029, 2952, 2848, 1729, 1435, 1200, 1163, 1025, 660; MS (EI): m/z: 198 (0.25), 167 (14), 138 (35), 107 (9), 91 (1), 79 (100), 59 (9); HRMS (ESI): m / z : calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}$: 221.0784 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$, found: 221.0785.
(1R,6S)-6-(Methoxycarbonyl)cyclohex-3-enecarboxylic acid (4). ${ }^{[4]}$ Diester 3 ($74.5 \mathrm{~g}, 376 \mathrm{mmol}$) was suspended in phosphate buffer ($1340 \mathrm{~mL}, 100 \mathrm{~mm}, \mathrm{pH}=7.0$). Pig liver esterase (10.9
 $\mathrm{kU}, 728 \mathrm{mg}$ lyophilized powder) and ammonium sulfate (3 M in water, 3.16 mL) were added and the pH was kept constant by addition of $\mathrm{NaOH}(1 \mathrm{~m})$ via a pH -stat for 2 d . For work up, the pH was adjusted to ≈ 10 by the addition of $\mathrm{NaOH}(1 \mathrm{M})$ and the obtained slurry was extracted with tert-butyl methyl ether ($2 \times 500 \mathrm{~mL}$). The aqueous phase was acidified with conc. HCl until a pH 1 was reached, which led to significant precipitation of the enzyme. To facilitate the extraction, tert-butyl methyl ether (500 mL) was added and the mixture was filtered through a pad of Celite, which was carefully washed with water (100 mL) and tert-butyl methyl ether (100 mL). The
phases were separated and the aqueous phase was extracted with tert-butyl methyl ether (2×500 mL). The combined organic layers of the second extraction step (under acidic conditions) were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give compound 4 as a pale yellow oil ($65.2 \mathrm{~g}, 94 \%$). $[\alpha]_{D}^{20}=+17.7\left[\mathrm{c}=1.0, \mathrm{EtOH}\right.$, lit.: $\left.{ }^{[5]}+17.7(\mathrm{c}=1.0, \mathrm{EtOH})\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.67(\mathrm{~s}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $)_{3}$: $\delta=$ $179.8,173.8,125.3,125.2,52.1,39.7,39.6,25.9,25.7$; IR (film) ũ = 3100br, 3031, 2952, 2851, 1731, 1704, 1655, 1436, 1297, 1264, 1203, 1163, 1033, 736, 663; MS (EI): m/z: 184 (1), 166 (8), 153 (11), 138 (24), 124 (27), 107 (7), 97 (4), 79 (100); HRMS (ESI): m/z: calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{Na}_{2}: 229.0447$ $[\mathrm{M}+2 \mathrm{Na}]^{+}$, found: 229.0448.
(3aS,7aR)-3a,4,7,7a-Tetrahydroisobenzofuran-1(3H)-one (5). ${ }^{[6]}$ A flame-dried round bottom flask equipped with a droping funnel was charged with $\mathrm{LiEt}_{3} \mathrm{BH}(1 \mathrm{M} \mathrm{in} \mathrm{THF} 608 \mathrm{~mL},, 608 \mathrm{mmol}$)
 under argon. The solution was cooled to $0^{\circ} \mathrm{C}$ before a solution of compound $4(28.0 \mathrm{~g}, 152$ $\mathrm{mmol})$ in THF (20 mL) was added over a period of 30 min . Once the addition was complete, the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and for 3 h at room temperature. For work up, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the reaction was carefully quenched by addition of aq. $\mathrm{HCl}(6 \mathrm{M}, 500 \mathrm{~mL})$. The resulting mixture was stirred overnight before it was extracted with tert-butyl methyl ether (4×200 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (SiO_{2}, pentane/tert-butyl methyl ether, $3 / 1$) to give the title compound as colorless oil, which was dried under high vacuum for 1 h (20.5 g, 98\%). $[\alpha]_{D}^{20}=+49.7$ $\left[\mathrm{c}=1.8\right.$, EtOAc, lit.: $\left.{ }^{[6]}+82.5(\mathrm{c}=2.0, \mathrm{EtOAc})\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.73(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=$ $5.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=1.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.44-2.32 (m, 1H), 2.29-2.23 (m, 1H), 1.93-1.87 (m, 1H); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.2,125.3$, 124.9, $72.8,37.4,32.1,24.8,22.1$; IR (film) ũ = 3031, 2969, 2905, 2843, 1763, 1480, 1435, 1372, 1197, 1173, 1132, 1040, 944, 663; MS (EI): m/z: 138 (41), 123 (9), 110 (5), 93 (100), 79 (89); HRMS (ESI): m / z : calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: $138.0681[\mathrm{M}]^{+}$, found: 138.0681.

2,2'-[(3R,4S)-2-Oxotetrahydrofuran-3,4-diyl]diacetic acid (6). ${ }^{[6]}$ A solution of lactone 5 (200 mg, 1.45 mmol) in acetone (1 mL) and added dropwise over a period of 1 h to a solution of $\mathrm{KMnO}_{4}(699 \mathrm{mg}, 4.42 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The brown slurry was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, warmed to room temperature and stirred overnight. NaHSO_{3} was added in order to destroy any remaining KMnO_{4}. The resulting slurry was filtered through a pad of Celite and the filter cake carefully rinsed with water/THF (1/1, 25 mL). The combined filtrate was acidified to pH 2, saturated with NaCl and extracted with tert-butyl methyl ether/THF (2/3, $6 \times 40 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure (the bath temperature must not exceed $30^{\circ} \mathrm{C}$). The remaining while solid material was dried under high vacuum and found pure enough for immediate further use ($283 \mathrm{mg}, 97 \%$).

The reaction was also performed on much larger scale, using $\mathrm{KMnO}_{4}(119.4 \mathrm{~g}, 0.76 \mathrm{~mol})$ in water $(650 \mathrm{~mL})$ and lactone $5(26.1 \mathrm{~g}, 189 \mathrm{mmol})$ in acetone $(139 \mathrm{~mL})$ to give analytically pure $6(27.3 \mathrm{~g}$, 71%) which analyzed as follows: m.p. $=162-164{ }^{\circ} \mathrm{C}$ (EtOAc, lit. ${ }^{[6]} 144-157^{\circ} \mathrm{C}$); $[\alpha]_{D}^{20}=-75.3[\mathrm{c}=1.0$,

MeOH, lit. $\left.{ }^{[6]}-85.3(c=3.29, \mathrm{MeOH})\right]$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): \delta=12.41(\mathrm{bs}, 2 \mathrm{H}), 4.38$ (dd, $\mathrm{J}=$ $6.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=2.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=7.9,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 2.48(\mathrm{~m}$, $2 H$), 2.35 (dd, $J=4.8,16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (dd, $J=10.1,16.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}$): δ $=177.5,172.9,172.5,71.0,38.7,34.2,32.5,30.2$ IR (film) $\tilde{u}=2922$ (br), 2578 (br), 1752, 1692, 1416, 1385, 1328, 1296, 1222, 1171, 986, 925; MS (EI): m/z: 203 (0.34), 184 (10), 166 (6), 156 (24), 143 (49), 125 (41), 112 (100), 97 (47), 85 (36), 70 (40), 67 (42), 55 (64); HRMS (ESI): m/z: calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{Na}$: $225.0370[\mathrm{M}+\mathrm{Na}]^{+}$, found: 225.0370.
(3aS,6aR)-Tetrahydro-1H-cyclopenta[c]furan-1,5(3H)-dione (7). ${ }^{[7]}$ Diacid 6 (998 $\mathrm{mg}, 4.94 \mathrm{mmol}$) was
 suspended in $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL}, 10.8 \mathrm{~g}, 106 \mathrm{mmol})$ and the mixture stirred at $130{ }^{\circ} \mathrm{C}$ (bath temperature) for 1 h . After cooling to room temperature, the mixture was diluted with THF (15 mL) before $\mathrm{K}_{2} \mathrm{CO}_{3}(667 \mathrm{mg}, 4.83 \mathrm{mmol})$ was added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ (bath temperature) overnight. After cooling to $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$ and the mixture stirred for 30 min at $0^{\circ} \mathrm{C}$. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added and stirring continued for 20 min at $0^{\circ} \mathrm{C}$. Phase separation followed by extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$ gave a combined organic phase, which was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1/1) to give the title compound as a pale yellow solid ($504 \mathrm{mg}, 73 \%$).

The reaction was also performed on larger scale, using $\mathrm{Ac}_{2} \mathrm{O}(124 \mathrm{~mL}, 134 \mathrm{~g}, 1.31 \mathrm{~mol})$, diacid 6 (10.0 $\mathrm{g}, 49.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.84 \mathrm{~g}, 49.5 \mathrm{mmol})$ and THF (370 mL) to give analytically pure $7(3.86 \mathrm{~g}, 56 \%)$ which analyzed as follows: m.p. $=81-82^{\circ} \mathrm{C}$ (EtOAc, lit.: ${ }^{[4 a]} 84^{\circ} \mathrm{C}$ for ent-6); $[\alpha]_{D}^{20}=+80.6[\mathrm{c}=1.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit. : $^{[4 \mathrm{a}]}-67.8\left(\mathrm{c}=2.59, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, for ent-6); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.53(\mathrm{dd}, \mathrm{J}=5.9,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}), 3.40-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=8.3,19.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=214.0,178.1,71.8,42.2,40.8,39.3,36.3$; $\operatorname{IR}($ film $) ~ \tilde{u}=2975,2920,1765$, 1732, 1403, 1371, 1308, 1185, 1173, 1097, 1033, 975; MS (EI): m/z: 140 (72), 122 (4), 112 (15), 99 (64), 95 (23), 81 (35), 67 (73), 54 (100); HRMS (ESI): m / z : calc. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}: 140.0473$ [M] ${ }^{+}$, found: 140.0474.
(3aS,5R,6aR)-5-Hydroxyhexahydro-1H-cyclopenta[c]furan-1-one (8). ${ }^{[4 \mathrm{a}]} \mathrm{NaOAc}(7.04 \mathrm{~g}, 85.8 \mathrm{mmol})$ and $\mathrm{Pt} / \mathrm{C}(10 \mathrm{wt}-\%, 781 \mathrm{mg}, 1.4 \mathrm{~mol}-\%)$ were added to a solution of keto-lactone 7 (4.01 $\mathrm{g}, 28.6 \mathrm{mmol})$ in EtOAc (120 mL) and the mixture was stirred under an atmosphere of hydrogen (1 atm) for 1.5 d . The suspension was filtered through a pad of silica which was carefully rinsed with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined filtrates were evaporated under reduced pressure to give the title compound as pale yellow solid ($4.04 \mathrm{~g}, 99 \%$) : m.p. $=64-65^{\circ} \mathrm{C}$ (EtOAc, lit.: ${ }^{[8]}$ $\left.69-70^{\circ} \mathrm{C}\right) ;[\alpha]_{D}^{20}=-71.0\left[\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit.: $\left.{ }^{[8]}-59.5\left(\mathrm{c}=1.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $4.53(\mathrm{t}, J=8.7,1 \mathrm{H}), 4.44(\mathrm{t}, J=3.8,1 \mathrm{H}), 4.21(\mathrm{dd}, J=3.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}$, $1 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=181.5,74.7,73.6,43.3,42.3$, 40.4, 36.9; IR (film) $\tilde{u}=3451 \mathrm{br}, 2939,1744,1383,1265,1192,1140,1105,1008,977,734,701$; MS (EI): m/z: 142 (43), 124 (47), 113 (32), 96 (20), 83 (55), 69 (62), 55 (100); HRMS (ESI): m/z: calc. for
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}$: $142.0630[\mathrm{M}]^{+}$, found: 142.0628. Single crystals suitable for X-ray diffraction were obtained from a solution in EtOAc upon slow evaporation of the solvent.
(3aS,5R,6aR)-5-[(tert-Butyldimethylsilyl)oxy]hexahydro-1H-cyclopenta[c]furan-1-one (9). TBSOTf

($9.78 \mathrm{~mL}, 11.3 \mathrm{~g}, 42.6 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of 2,6-lutidine $(6.6 \mathrm{~mL}, 6.09 \mathrm{~g}, 56.8 \mathrm{mmol})$ and hydroxylactone $6(4.04 \mathrm{~g}, 28.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (38 mL). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction was quenched by the addition of sat. aq. $\mathrm{NaHCO}_{3}(\mathrm{ca} 10 \mathrm{~mL}$.$) and the aqueous layer was extracted with EtOAc (3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with aq. $\mathrm{CuSO}_{4}(1 \mathrm{M}, 5 \times 15 \mathrm{~mL})$ and brine (10 mL), before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dried under high vacuum to give pure 9 as pale yellow solid ($7.12 \mathrm{~g}, 98 \%$). m.p. $=48-49{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;[\alpha]_{D}^{20}=-20.3\left(\mathrm{c}=1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.51(\mathrm{t}, \mathrm{J}=8.7,1 \mathrm{H}), 4.34-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.99(\mathrm{~m}, 2 \mathrm{H})$, $2.20(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.1,74.9,74.2,43.7,43.5,40.7,37.2,26.0,18.2,-4.62,-4.65$; IR (film) $\tilde{u}=$ 2958, 2928, 2856, 1751, 1377, 1255, 1195, 1045, 1023, 908, 833, 773; MS (EI): m/z: 241 (3), 199 (93), 169 (12), 141 (14), 125 (4), 105 (7), 89 (6), 75 (100), 59 (7); HRMS (ESI): m/z: calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}$: $279.1387[\mathrm{M}+\mathrm{Na}]^{+}$, found: 279.1383.
\{(1S,2R,4S)-4-[(tert-Butyldimethylsilyl)oxy]-2-(prop-1-yn-1-yl)cyclopentyl]methanol (11). A flame dried 2-neck round bottom flask, equipped with a reflux condenser and a dropping funnel, was charged with $\mathrm{PPh}_{3}(43.4 \mathrm{~g}, 165 \mathrm{mmol})$. THF (450 mL) and the lactone 9 ($5.31 \mathrm{~g}, 20.7 \mathrm{mmol}$) were added and the mixture was stirred at reflux temperature (oil-bath temperature $\approx 80{ }^{\circ} \mathrm{C}$). A solution of $\mathrm{CCl}_{4}(50 \mathrm{~mL}, 79.5 \mathrm{~g}, 516 \mathrm{mmol})$ in THF (50 mL) was added dropwise over a period of 3.5 h . Once the addition was complete, stirring was continued at this temperature for 3 h , before the mixture was cooled and the reaction quenched with water (10 mL). The mixture was extracted with tert-butyl methyl ether ($3 \times 200 \mathrm{~mL}$), the combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50/1) to give the dichloro-olefin 10 (containing minor PPh_{3} impurities) which was immediately used for the subsequent reaction. Characteristic data of 10 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.45(\mathrm{t}, J=8.6,1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dt}, J=4.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{s}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=159.5,79.5,77.4,74.5,46.0,41.4,41.4,40.6,25.8,18.0,-4.7$, -4.9.

A flame-dried Schlenk tube was charged with $\mathrm{Fe}(\mathrm{acac})_{3}$ ($896 \mathrm{mg}, 2.54 \mathrm{mmol}$), ortho-phenylenediamine ($548 \mathrm{mg}, 5.07 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ and the crude dichloro-olefin 10 from the previous reaction. The solution was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 39.6 \mathrm{~mL}, 63.4 \mathrm{mmol}\right)$ was slowly added. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and for 2 h at room temperature. For work up, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before the reaction was carefully quenched with water (20 mL). The aqueous phase was extracted with tert-butyl methyl ether $(3 \times 100 \mathrm{~mL})$ and the combined organic
layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 15/1) to give alkyne 11 as an oil (3.02 g , $55 \%) .[\alpha]_{D}^{20}=-2.6\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.14$ (quint, $J=6.5,1 \mathrm{H}$), 3.82 (dd, $J=7.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{dt}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=80.2,78.5,72.7,65.1,42.8,42.7,38.4,30.2,26.0,18.2,3.7,-4.6$, -4.7; IR (film) ũ = 3414br, 2954, 2929, 2885, 2857, 1472, 1463, 1361, 1256, 1099, 1034, 896, 835, 775, 738; MS (EI): m/z: 268 (0.2), 253 (1), 211 (50), 193 (6), 181 (14), 169 (17), 155 (10), 141 (18), 119 (37), 105 (8), 91 (28), 75 (100); HRMS (ESI): m / z : calc. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}$: $291.1751[\mathrm{M}+\mathrm{Na}]^{+}$, found: 291.1749.

Compound 12. Lactone $9(8.85 \mathrm{~g}, 20.7 \mathrm{mmol})$ was added to a solution of $\mathrm{PPh}_{3}(71.5 \mathrm{~g}, 273 \mathrm{mmol})$ in THF (800 mL) and the resulting mixture was stirred at reflux temperature (oil bath temperature ca. $80^{\circ} \mathrm{C}$) when a solution of $\mathrm{CCl}_{4}(83 \mathrm{~mL}, 132 \mathrm{~g}, 860 \mathrm{mmol})$ in THF (50 mL) was added dropwise over a period of 3.5 h . Once the addition was complete, stirring was continued at this temperature for an additional 3 h , before the mixture was allowed to cool and the reaction was quenched with water (10 mL). The mixture was extracted with tert-butyl methyl ether ($3 \times 200 \mathrm{~mL}$), the combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (50 mL), before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure (Note: GC-MS shows that the desired dichloro-olefin 10 was the major component at this point). The crude product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 40 mL) and the solution was ultrasonicated in a laboratory cleaning bath for 1 min . The obtained slurry was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20/1 to 4/1) to give product 12 as a white solid ($4.59 \mathrm{~g}, 64 \%$). m.p. $=51-54{ }^{\circ} \mathrm{C}$ (hexane/EtOAc 4/1); $[\alpha]_{D}^{20}=+38.2\left(c=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.67(\mathrm{~s}, 1 \mathrm{H}), 4.46$ $(d, J=0.5,1 H), 4.01(d d, J=8.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=8.2,1 \mathrm{H}), 2.97-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.00 (m, 2H), 1.72-1.68 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=112.5,76.6,74.0,71.8,48.5$, 39.5, 38.4, 37.8; IR (film) ũ = 2999, 2973, 2957, 2883, 1437, 1310, 1214, 1140, 1056, 998, 920, 760, 730; MS (EI): m/z: 208 (4), 172 (16), 164 (16), 137 (100), 125 (22), 107 (25), 97 (24), 80 (100), 67 (94); HRMS (ESI): m/z: calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}: 230.9950[\mathrm{M}+\mathrm{Na}]^{+}$, found: 230.9951. Crystals suitable for Xray diffraction were obtained by sublimation of a sample at $40^{\circ} \mathrm{C}$ in vacuum ($10^{-3} \mathrm{mbar}$).
(1S,2R,4S)-4-[(tert-Butyldimethylsilyl)oxy]-2-(prop-1-yn-1-yl)cyclopentane-1-carbaldehyde
(S1).
Pyridine ($5.80 \mathrm{~mL}, 71.7 \mathrm{mmol}$) and Dess-Martin-periodinane ($5.63 \mathrm{~g}, 13.3 \mathrm{mmol}$) were successively added to a solution of alcohol 11 ($2.38 \mathrm{~g}, 8.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (46 mL). The mixture was stirred for 3 h at room temperature before the reaction was quenched with sat. aq. NaHCO_{3} (ca. 10 mL). The mixture was extracted with tert-butyl methyl ether $(3 \times 30 \mathrm{~mL})$, the combined organic layers were washed with aq. $\mathrm{CuSO}_{4}(1 \mathrm{M}, 4 \times 10 \mathrm{~mL})$ and brine (2 x 5 mL) before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification of the crude product by flash chromatography (SiO_{2}, hexane/EtOAc, 40/1) yielded the title compound in the form of a colorless oil ($2.09 \mathrm{~g}, 89 \%$). $[\alpha]_{D}^{20}=+31.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
$9.92(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (quint, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{tdd}, J=11.0,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.4(\mathrm{ddd}, J=13.8,8.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.87 (s, 9H), $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.1,79.9,78.3,72.9,51.5$, $43.2,36.8,29.5,25.9,18.1,3.7,-4.65,-4.68$; $\operatorname{IR}($ film $) ~ \tilde{u}=2930,2857,1723,1472,1361,1255,1115$, 896, 775; MS (EI): m/z: 266 (0.12), 251 (0.89), 209 (72), 179 (3), 165 (4), 143 (100), 129 (7), 117 (4), 91 (4), 75 (77); HRMS (ESI): m/z: calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}$: 289.1594 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$, found: 289.1596.
(1R,2R,4S)-4-[(tert-Butyldimethylsilyl)oxy]-2-(prop-1-yn-1-yl)cyclopentane-1-carbaldehyde
(13).
$\mathrm{K}_{2} \mathrm{CO}_{3}(2.17 \mathrm{~g}, 15.7 \mathrm{mmol})$ was added in one portion to a solution of aldehyde $\mathbf{~ S 1}$ $(2.09 \mathrm{~g}, 7.84 \mathrm{mmol})$ in $\mathrm{MeOH}(200 \mathrm{~mL})$ and the resulting mixture was stirred for 3 h at room temperature. EtOAc (ca. 70 mL) was added, followed by aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc $(2 \times 70 \mathrm{~mL})$ and the combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The remaining crude material was purified by flash chromatography (SiO_{2}, hexane/toluene, $2 / 1$) to give the title compound as colorless oil (1.84 g, 88\%). $[\alpha]_{D}^{20}=-22.4$ (c $\left.=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=9.73(\mathrm{~d}, J=1.8,1 \mathrm{H}$), 4.19 (quint., $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.07(\mathrm{qd}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dddd, J $=11.3,9.0,6.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (ddd, $J=13.6,8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=13.5,8.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83(\mathrm{ddd}, J=13.3,9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.3,80.6,77.4,72.2,57.1,43.5,35.9,29.1,25.9$, 18.2, 3.7, -4.64, -4.66; IR (film) $\tilde{v}=3097,2929,2857,1725,1331,1302,1253,1112,835,773$; MS (EI): m/z: 209 (100), 195 (3), 179 (3), 169 (8), 151 (3), 143 (14), 117 (10), 105 (20), 97 (8), 91 (4), 75 (77); HRMS (ESI): m/z: calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}$: $289.1594[\mathrm{M}+\mathrm{Na}]^{+}$, found: 289.1594.

1-Bromo-3-pentyne (14). ${ }^{[13]} \mathrm{Br}_{2}(6.65 \mathrm{~g}, 41.6 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a solution of PPh_{3} Br $(11.7 \mathrm{~g}, 44.6 \mathrm{mmol})$ in $\mathrm{MeCN}(62 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(114 \mathrm{~mL})$ and the resulting mixture was stirred for 20 min at this temperature. Imidazole ($3.0 \mathrm{~g}, 44.66 \mathrm{mmol}$) was then added in portions before 3-pentyn-1-ol ($2.5 \mathrm{~g}, 29.7 \mathrm{mmol}$) was slowly introduced. The slurry was stirred for 30 \min at $0^{\circ} \mathrm{C}$ and for 2 h at ambient temperature. The reaction was quenched with sat. aq. NaHCO_{3} and the aqueous phase extracted with pentane $(2 \times 100 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated (450-350 mbar, $30^{\circ} \mathrm{C}$ bath temperature). The obtained solution was filtered twice through a large pad of silica, eluting with pentane. Concentration of the pentane fractions ($350 \mathrm{mbar}, 30^{\circ} \mathrm{C}$ bath temperature) gave the title compound as clear oil (4.35 g , quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.41(\mathrm{t}, J=7.4,2 \mathrm{H}), 2.69(\mathrm{tq}, J=2.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=78.1,76.2,30.5,23.5,3.6 ; \operatorname{IR}(f i l m) ~ \tilde{u}=2969,2919,2855,1436,1336$, 1271, 1212, 919, 871, 745, 698, 637, 566, 503; MS (EI): m/z: 148 (42), 146 (43), 93 (2), 67 (100), 53, (16), 41 (41); HRMS (EI): m / z : calc. for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{Br}: 145.9732$ [M], found: 145.9731.
(R)-6-Octyn-2-ol (S2). ${ }^{[14]}$ Bromide 14 (3.59, 24.4 mmol) was added dropwise to a suspension of activated magnesium ${ }^{[15]}$ ($832 \mathrm{mg}, 34.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$ and for 40 min at room temperature. After cooling to $-78^{\circ} \mathrm{C}(15 \mathrm{~min}$ cooling time), CuCN ($219 \mathrm{mg}, 2.44 \mathrm{mmol}$) followed by (R)-propylene oxide ($1.14 \mathrm{~mL}, 947 \mathrm{mg}, 16.3$
mmol) was introduced. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ before the cooling bath was removed and stirring was continued for 16 h . For work up, the reaction was quenched at $0^{\circ} \mathrm{C}$ by the careful addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ca} .30 \mathrm{~mL})$, the obtained slurry was filtered through a pad of Celite to remove the remaining magnesium powder and the filtrate was extracted with tert-butyl methyl ether ($4 \times 50 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated, and the residue was subjected to flash chromatography (SiO_{2}, hexane/tert-butyl methyl ether, 4/1) to yield the title compound as a pale yellow oil ($1.8 \mathrm{~g}, 88 \%$). $[\alpha]_{D}^{20}=-10.6$ (c $=$ 1.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.36[\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}], 1.20(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=79.1$, $76.0,67.9,38.6,25.4,23.7,18.9,3.6$; IR (film) $\tilde{u}=3351 b r, 2965,2920,2863,1455,1435,1373,1331$, 1182, 1127, 1084, 1045, 1004, 990, 943, 862, 733; MS (EI): m/z: 111 (23), 93 (84), 91 (20), 84 (71), 79 (24), 77 (26), 71 (41), 66 (100), 54 (41), 45 (78); HRMS (EI): m/z: calc. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: 126.1046$ [M], found: 126.1045.
(S)-Oct-6-yn-2-yl propiolate (16). Propiolic acid (1.19 g, 16.6 mmol) was dissolved in THF (15 mL) and the solution cooled to $0^{\circ} \mathrm{C}$ before diisopropyl azodicarboxylate $(2.42 \mathrm{~mL}, 2.46 \mathrm{~g}$, 12.2 mmol) was added. Next, a solution of alcohol $\mathbf{S 2}(1.40 \mathrm{~g}, 11.1 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(3.79 \mathrm{~g}, 14.4 \mathrm{mmol})$ in THF (15 mL) was introduced over the course of 1 h . The resulting mixture was allowed to warm to room temperature and stirring was continued for 16 h . tert-Butyl methyl ether (100 mL) was added and the obtained red solution was washed with $\mathrm{H}_{2} \mathrm{O}_{2}$ (10 $w t-\%$ in water, $3 \times 30 \mathrm{~mL}$) and sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to ca. 10 mL (250 mbar). This residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/tert-butyl methyl ether, 30/1) to give the title compound as pale yellow oil ($1.30 \mathrm{~g}, 66 \%$). $[\alpha]_{D}^{20}=+28.8\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.04(\mathrm{dqd}, \mathrm{J}=$ $7.5,6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.15\left(\mathrm{tq}, J_{1}=7.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.77(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.47(\mathrm{~m}$, $4 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.5,78.6,76.3,75.2,74.3,73.6,35.0$, 24.9, 19.9, 18.7, 3.6; IR (film) ũ = 3264, 2981, 2939, 2865, 2115, 1453, 1381, 1231, 1130, 1080, 755; MS (EI): m/z: 163 (0.4), 135 (3), 121 (5), 108 (12), 93 (95), 79 (25), 66 (100), 53 (86); HRMS (ESI): m/z: calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$: $201.0887[\mathrm{M}+\mathrm{Na}]^{+}$, found: 201.0886.

Preparation of (R)-bis(3,5-di-tert-Butylphenyl)(1-methylpyrrolidin-2-yl)methanol (25). This ligand
 was prepared in analogy to a literature protocol. ${ }^{[9][16]}$ Magnesium turnings (682 mg , 28.1 mmol) were combined with iodine (ca. 4 mg) in a 2-neck round bottom flask, equipped with a reflux condenser. The iodine was sublimed via a heatgun and THF (6 mL) was introduced after the iodine vapor had settled, followed by the dropwise addition of a solution of the 3,5-bis-tert-butylphenylbromide in THF (10 mL). The reaction was initiated via gentle heating after addition of ca. $1 / 3$ of the bromide. Once the addition was complete, the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The resulting solution was slowly added to a solution of benzyl 2-methyl (R-pyrrolidine)-1,2-dicarboxylate (N -Cbz D-proline methyl ester, $1.79 \mathrm{~g}, 6.80 \mathrm{mmol}$) in THF (7.4 mL) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room
temperature and stirred for 2 h . The reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with tert-butyl methyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (30 mL) before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 9/1) to give a mixture of the target compound $\mathbf{2 5}$ and di-tert-butylbenzene.

This mixture was dissolved in THF (90 mL) and cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{LiAlH}_{4}(684 \mathrm{mg}, 18.0 \mathrm{mmol})$ was added portionwise over a period of 5 min . The cooling bath was removed and the mixture stirred at $90^{\circ} \mathrm{C}$ for 30 min . The reaction was carefully quenched at $0^{\circ} \mathrm{C}$ with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (ca. 10 mL). A saturated aqueous solution of Rochelle's salt (5 mL) was added and the mixture was stirred for 45 min. Insoluble material was filtered off through a pad of Celite, the filtrate was checked for a $\mathrm{pH}>8$ and extracted with tert-butyl methyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a colorless oil containing small amounts of a white solid. This material was dissolved in hexane and kept at $4{ }^{\circ} \mathrm{C}$ to allow for crystallization (scratching of the flask with a glass rod was necessary). After 16 h , compound 25 was collected as a white amorphous solid ($2.58 \mathrm{~g}, 77 \%$); after concentration of the mother liquor and repeated crystallization, a second crop of product was obtained ($380 \mathrm{mg}, 11 \%$). m.p. $=138-142^{\circ} \mathrm{C}$ (hexane); $[\alpha]_{D}^{20}=-13.7$ (c $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.55(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ $2.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=9.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=149.9,149.8,147.7,146.2,120.1,119.8,119.7,119.5,77.9,73.2,59.5,43.0,35.1,35.0$, 31.74, 31.72, 30.0, 24.0; IR (film) ũ = 2962, 2904, 2868, 2787, 1598, 1362, 1214, 742, 668; MS (EI): m/z: 476 (0.3), 407 (0.7), 392 (2), 302 (0.6), 217 (4), 161 (2), 133 (1), 84 (100), 57 (5); HRMS (ESI): m/z: calc. for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{NO}: 492.4200[\mathrm{M}+\mathrm{H}]^{+}$, found: 492.4200.
(S)-Oct-6-yn-2-yl (S)-4-\{(1R,2R,4S)-4-[(tert-butyldimethylsilyl)oxy]-2-(prop-1-yn-1-yl)cyclopentyl\}-4-hydroxybut-2-ynoate (17). ${ }^{[9]}$ Compound 25 ($101 \mathrm{mg}, 0.21 \mathrm{mmol}, 27.5 \mathrm{~mol}-\%$)
 was dissolved in dry toluene ($600 \mu \mathrm{~L}$). Ester 16 ($207 \mathrm{mg}, 1.16 \mathrm{mmol}$) was added, followed by careful addition of $\mathrm{Me}_{2} \mathrm{Zn}(1.2 \mathrm{M}$ in toluene, $940 \mu \mathrm{~L}, 1.13$ $\mathrm{mmol})$ and a solution of aldehyde $13(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in toluene (840 $\mu \mathrm{L})$. The mixture was stirred for 16 h at ambient temperature before the reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc (3 x 25 mL), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The remaining yellow oil was purified by flash chromatography (SiO_{2}, toluene/EtOAc, 50/1) to give the title compound as colorless oil ($247 \mathrm{mg}, 74 \%$).

The reaction was also performed on larger scale, using aldehyde 13 ($1.67 \mathrm{~g}, 6.28 \mathrm{mmol}$), ester 16 $(1.73 \mathrm{~g}, 9.73 \mathrm{mmol})$, dimethylzinc (1.2 M in toluene, $7.85 \mathrm{~mL}, 9.42 \mathrm{mmol}$), $25(772 \mathrm{mg}, 1.57 \mathrm{mmol}, 25$ $\mathrm{mol}-\%$) and toluene (12 mL) to give the title compound ($1.84 \mathrm{~g}, 66 \%$), which analyzed as follows: $[\alpha]_{D}^{20}=-12.3\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.02(\mathrm{ddq}, J=7.6,6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dd, J = 7.0, 3.3 Hz, 1H), 4.23 (p, J = 5.8 Hz, 1H), 2.63-2.46 (m, 2H), 2.39 (d, J=7.0 Hz, 1H), 2.31 (ddd, J
$=13.4,7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.75-1.40(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.1,86.3,81.1,78.6,77.7,77.4,76.2$, $73.3,71.8,63.6,49.8,43.8,36.6,35.0,30.0,26.0,24.9,20.0,18.7,18.2,3.7,3.6,-4.61,-4.63$; IR (film) ũ = 3461br, 2929, 2856, 2233, 1709, 1462, 1378, 1360, 1252, 1112, 1051, 836, 775; MS (EI): m/z: 401 (5), 387 (30), 279 (39), 209 (12), 187 (14), 169 (11), 161 (11), 159 (13), 141 (12), 131 (17), 115 (11), 109 (93), 105 (19), 91 (20), 75 (100), 67 (42); HRMS (ESI): m/z: calc. for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}$: $467.2597[\mathrm{M}+\mathrm{Na}]^{+}$, found: 467.2588 .
(S)-Oct-6-yn-2-yl (R,E)-4-\{(1R,2R,4S)-4-[(tert-butyldimethylsilyl)oxy]-2-(prop-1-yn-1-yl)cyclopentyl\}-
 4-hydroxybut-2-enoate (S3). ${ }^{[10]}$ Red-Al (65 wt-\% in toluene, 3.03 mL , 10.1 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of compound 17 ($2.25 \mathrm{~g}, 5.05 \mathrm{mmol}$) in THF (76 mL) and the resulting mixture was stirred at this temperature for 20 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was then used to quench the reaction. The resulting mixture was allowed to warm to room temperature before it was extracted with EtOAc [$4 \times 50 \mathrm{~mL}$, in order to facilitate extraction, saturated aq. Rochelle's salt solution (15 mL) was added]. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO_{2}, hexane/EtOAc , 12/1) to give the title compound as pale yellow oil ($2.10 \mathrm{~g}, 93 \%$). $[\alpha]_{D}^{20}=-9.5$ ($\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.98(\mathrm{dd}, J=4.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, \mathrm{J}=1.8,15.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.99 (sext., $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24$ $(\mathrm{m}, 2 \mathrm{H}), 2.14(\mathrm{tq}, J=7.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.73-1.46(\mathrm{~m}, 7 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.2,149.1,121.2,81.3,78.8$, $76.9,76.1,72.0,71.1,70.9,49.8,43.7,35.3,35.2,30.6,26.0,25.1,20.2,18.8,18.2,3.7,3.6,-4.60$, -4.61; IR (film) ũ = 3472br, 2952, 2929, 2857, 1716, 1699, 1462, 1360, 1254, 1172, 1114, 1084, 1051, 903, 835, 774; MS (EI): m/z: 403 (8), 389 (50), 347 (15), 281 (18), 189 (18), 169 (15), 129 (17), 109 (75), 75 (100), 67 (46); HRMS (ESI): m / z : calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SiNa}: 469.2745[\mathrm{M}+\mathrm{Na}]^{+}$, found: 469.2745.
(S)-Oct-6-yn-2-yl (R,E)-4-[(tert-butyldimethylsilyl)oxy]-4-\{(1R,2R,4S)-4-[(tert-butyldimethylsilyl)oxy] -2-(prop-1-yn-1-yl)cyclopentyl\}but-2-enoate (18). Pyridine ($614 \mu \mathrm{~L}, 600 \mathrm{mg}, 7.59 \mathrm{mmol}$) and TBSOTf

($871 \mu \mathrm{~L}, 1.00 \mathrm{~g}, 3.79 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ to a solution of compound $\mathbf{S 3}$ ($1.13 \mathrm{~g}, 2.53 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting mixture was stirred at this temperature for 30 min . The reaction was quenched with sat. aq. NaHCO_{3} and the mixture extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with aq. $\mathrm{CuSO}_{4}(1 \mathrm{~m}, 5 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, hexane/EtOAc, 20/1) to give the title compound as colorless oil (1.32 g, 93\%). $[\alpha]_{D}^{20}=-16.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.89(\mathrm{dd}, \mathrm{J}=4.8,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.93(\mathrm{dd}, J=1.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 3 \mathrm{H})$, $1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta=166.3,150.6,120.6,81.4,78.8,76.4,76.0,72.2,70.74,70.72,50.5,43.7$, $35.3,34.3,30.7,26.04,26.02,25.1,20.2,18.8,18.31,18.27,3.7,3.6,-4.1,-4.6,-5.0$; IR (film) ũ = 2954, 2930, 2898, 2857, 1719, 1658, 1472, 1463, 1361, 1256, 1170, 1129, 712, 776; MS (EI): m/z: 503 (83), 395 (18), 371 (23), 295 (9), 263 (33), 245 (13), 197 (10), 171 (19), 109 (64), 75 (75), 73 (100), 67 (33); HRMS (ESI): m/z: calc. for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}: 583.3611$ [M+Na] ${ }^{+}$, found: 583.3609.

Cycloalkyne 19. A flame-dried round bottom flask, equipped with a reflux condenser, was charged
 with molecular sieves [$5 \AA, 3.75 \mathrm{~g}$, powder (dried prior to use at $150^{\circ} \mathrm{C}$ under high vacuum)]. A solution of diyne 18 ($1.25 \mathrm{~g}, 2.23 \mathrm{mmol}$) in dry toluene (560 mL) was added and the slurry was stirred for 30 min before it was heated to $80^{\circ} \mathrm{C}$ (oil bath temperature). The reaction was initiated by the addition of a solution of complex 26 ($123 \mathrm{mg}, 118 \mu \mathrm{~mol}, 5 \mathrm{~mol}-\%$) in toluene (5 mL). After stirring for 45 min the mixture was diluted with EtOAc (60 mL) and filtered through a pad of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ which was rinsed with EtOAc (70 mL). The combined filtrates were concentrated under reduced pressure and the residue purified by flash chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, hexane/EtOAc, 80/1) to give the title compound as colorless oil ($752 \mathrm{mg}, 67 \%$). $[\alpha]_{D}^{20}=-28.6\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.59(\mathrm{dd}, J=2.9,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=1.9,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H})$, 3.96 (ddd, J = 1.9, 3.0, $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35-2.14 (m, 4H), 2.01-1.88 (m, 2H), 1.79-1.60 (m, 4H), 1.56-1.38 $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.6,152.4,118.5,82.9,81.9,76.1,71.8,71.0,53.9,44.3,41.9,36.0,31.5,29.9,26.0$, $24.8,21.1,19.4,18.3,18.2,-4.0,-4.6,-4.7$; IR (film) ũ = 2954, 2929, 2856, 1717, 1463, 1362, 1255, 837, 775; MS (EI): m/z: 449 (84), 373 (6), 317 (16), 289 (7), 251 (100), 197 (8), 73 (64); HRMS (ESI): m / z : calc. for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}$: $529.3142[\mathrm{M}+\mathrm{Na}]^{+}$, found: 529.3140.

Compound 20. $\mathrm{HCl}(2 \mathrm{M}, 1 \mathrm{~mL})$ was added to a solution of compound 19 ($75 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF
 $(5.5 \mathrm{~mL})$ and water (5.5 mL). The mixture was stirred for 39 h before the reaction was quenched with sat. aq. NaHCO_{3} (ca. 4 mL) and extracted with tert-butyl methyl ether ($3 \times 25 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the residue was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 1/2) to give the title compound as a white solid ($38 \mathrm{mg}, 92 \%$). m.p. $=189-191{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}\right) ;[\alpha]_{D}^{20}=-13.7$ (c = 0.66, acetone); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.76$ (dd, $J=15.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=9.4,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (dddt, $J=11.2,9.0,5.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38(\mathrm{dd}, J=13.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00$ $(\mathrm{m}, 2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.10(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta=168.4,155.0,118.0,83.8,82.8,76.1,72.7,72.0,54.5,44.4,41.6$, 36.9, 32.7, 25.9, 21.1, 19.9; IR (film) $\tilde{v}=3364$ (br), 3278 (br), 2970, 2948, 2926, 2865, 1711, 1438, 1258, 1111, 1064, 987; MS (ESI): m/z: $301[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z : calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}: 301.1410$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found: 301.1411. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a solution of the compound in MeOH /acetone.

Compound 21. In a flame dried Schlenk tube $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(57 \mathrm{mg}, 0.11 \mathrm{mmol}, 5 \mathrm{~mol}-\%$) was
 dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). A solution of cycloalkyne 19 ($1.15 \mathrm{~g}, 2.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added with stirring before this mixture was transferred under Ar via cannula into a pre-dried autoclave. The Schlenk tube was rinsed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, which was also added. The autoclave was pressurized with H_{2} (30 bar). After stirring for 4 h , the autoclave was vented and the remaining yellow solution filtered through a pad of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ which was carefully rinsed with EtOAc (50 mL). The combined filtrates were concentrated and the remaining pale brown oil was subjected to flash chromatography (neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, hexane/EtOAc, 90/1) to give a mixture of 21 and isomers (981 mg , 85\%) (as well as a small amount of overreduced product). This material was purified by preparative HPLC (Nucleodur C18 HTec, $10 \mu \mathrm{~m}, 250 \times 40$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 95 / 5,75 \mathrm{~mL} / \mathrm{min}$) to give pure 21 as a colorless oil ($642 \mathrm{mg}, 56 \%$). $[\alpha]_{D}^{20}=+20.1\left[\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right.$, lit.: $\left.{ }^{[11]}[\alpha]_{D}^{23}=+22\left(\mathrm{c} 0.72, \mathrm{CHCl}_{3}\right)\right]$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{dd}, J=3.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=1.8,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{ddd}, J=$ $4.5,10.1,14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (dd, $J=9.5,15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 (ddq, $J=1.8,6.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.22-4.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.01$ (ddd, $J=1.7,3.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.64(\mathrm{~m}, 3 \mathrm{H})$, $1.59-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.6,152.6,137.5,129.5,118.3$, $76.6,73.0,71.5,53.0,44.0,43.9,42.3,34.3,32.0,26.9,26.0,21.1,18.3,18.2,-3.9,-4.57,-4.60$, -4.7; IR (film) ũ = 2954, 2930, 2857, 1716, 1472, 1462, 1361, 1254, 1122, 1078, 837, 775; MS (EI): m/z: 508 (3), 493 (2), 451 (100), 433 (18), 361 (24), 343 (13), 319 (33), 301 (18), 291 (12), 227 (13), 199 (26), 185 (11), 147 (12), 129 (11), 73 (62); HRMS (ESI): m/z: calc. for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}: 531.3297$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found: 531.3296.
(+)-Brefeldin $\mathbf{A}(1) .{ }^{[11]} \mathrm{HCl}(2 \mathrm{M}$ in water, 8.2 mL$)$ was added to a solution of compound 21 (632 mg,
 1.24 mmol) in THF (46 mL) and water (46 mL) and the resulting mixture was stirred for 39 h at ambient temperature. The reaction was quenched by the addition of aq. sat. NaHCO_{3} and the aqueous layer extracted with tert-butyl methyl ether ($3 \times 50 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1/2) to give (+)-brefeldin A as a white solid ($327 \mathrm{mg}, 94 \%$). m.p. $=202-204{ }^{\circ} \mathrm{C}(\mathrm{MeOH}$, lit. ${ }^{[12]} 202-203{ }^{\circ} \mathrm{C}$) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.46$ (dd, $J=15.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=15.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (ddd, $J=4.6,10.5,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=9.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddq}, J=1.8,6.3$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.19 (m, 1H), 4.04 (ddd, $J=2.0,3.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (quint, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (ddd, $J=5.3,8.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (dddd, $J=$ $1.3,5.4,8.0,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=$ 168.3, 155.1, 138.1, 131.4, 117.7, 76.6, 73.2, 73.0, 53.2, 45.4, 44.1, 41.8, 35.0, 33.0, 28.0, 21.1; IR (film) ũ = 3352 (br), 3307 (br), 2923, 2893, 2854, 2495, 2455, 1709, 1448, 1255, 1109, 1070, 975; MS (ESI): m/z: 303 [M+Na] ${ }^{+}$; HRMS (ESI): m / z : calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}: 303.1567$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$, found: 303.1567. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a solution of the compound in $\mathrm{MeOH} /$ acetone.

Table S-1. Comparison of ${ }^{1} \mathrm{H}$ NMR data ([$\left.\left.\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ of (+)-Brefeldin A

observed		literature ${ }^{[12]}$		$\Delta \delta(\mathrm{ppm})$
δ, ppm	$J(\mathrm{~Hz})$	δ, ppm	$J(\mathrm{~Hz})$	
7.46	15.6, 3.0	7.45	15.6, 3.0	0.01
5.82	15.7, 2.0	5.82	15.7, 2.0	0.00
5.75	4.6, 10.5, 15.0	5.75	4.6, 10.2, 15.0	0.00
5.28	9.6, 15.1	5.27	9.6, 15.1	0.01
4.80	1.8, 6.3, 11.0	4.78	-	0.02
4.24-4.19	-	4.21	-	0.00
4.04	$2.0,3.1,9.5$	4.03	-	0.01
2.39	8.5	2.38	8.7	0.01
2.13	$5.3,8.8,13.2$	2.12	5.4, 8.7, 13.6	0.01
2.05-1.98	-	2.05-1.97	-	0.00
1.89-1.73	-	1.90-1.70	-	0.01
1.62-1.54	-	1.55	-	0.03
1.45	1.3, 5.4, 8.0, 13.3	1.42	-	0.03
1.24	6.2	1.23	6.2	0.01
0.94-0.85	-	0.90	-	0.00

Table S-2. Comparison of ${ }^{13} \mathrm{C}$ NMR data ($\left[\mathrm{D}_{4}\right]$-MeOH) of (+)-Brefeldin A

observed $\delta, p p m$	literature $^{[12]}$ δ, ppm	$\Delta \delta(\mathrm{ppm})$
168.3	168.7	-0.4
155.1	155.4	-0.3
138.1	138.4	-0.3
131.4	131.7	-0.3
117.7	118.1	-0.4
76.6	76.9	-0.3
73.2	73.5	-0.3
73.0	73.3	-0.3
53.2	53.5	-0.3
45.4	45.8	-0.4
44.1	44.4	-0.3
41.8	42.1	-0.3
35.0	35.3	-0.3
33.0	33.3	-0.3
28.0	28.3	-0.3
21.1	21.3	-0.2

References

[1] (a) J. Heppekausen, R. Stade, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11045-11057; (b) J. Heppekausen, R. Stade, A. Kondoh, G. Seidel, R. Goddard, A. Fürstner, Chem. Eur. J. 2012, 18, 1028110299.
[2] M. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, Adv. Synth. Catal. 2004, 346, 835841.
[3] J. E. Ladbury, E. E. Turner, J. Chem. Soc. 1954, 3885-3886.
[4] (a) H.-J. Gais, T. Lied, Angew. Chem. 1984, 96, 143-145; (b) S. Kobayashi, K. Kamiyama, T. limori, M. Ohno, Tetrahedron Lett. 1984, 25, 2557-2560.
[5] Y. N. Ito, X. Ariza, A. K. Beck, A. Boháč, C. Ganter, R. E. Gawley, F. N. M. Kühnle, J. Tuleja, Y. M. Wang, D. Seebach, Helv. Chim. Acta 1994, 77, 2071-2110.
[6] H.-J. Gais, K. L. Lukas, W. A. Ball, S. Braun, H. J. Lindner, Liebigs Ann. Chem. 1986, 687-716.
[7] Compare: Å. Rosenquist, I. Kvarnström, S. C. T. Svensson, B. Classon, B. Samuelsson, Acta. Chem. Scandinavia 1992, 46, 1127-1129.
[8] A. M. Gimazetdinov, G. V. Ishmurzina, M. S. Miftakhov, Russ. J. Org. Chem. 2012, 48, 8-17.
[9] In analogy to: N. Kojima, S. Nishijima, K. Tsuge, T. Tanaka, Org. Biomol. Chem. 2011, 9, 4425-4428.
[10] Compare: C. T. Meta, K. Koide, Org. Lett. 2004, 6, 1785-1787.
[11] Y. Wu, X. Shen, Y.-Q. Yang, Q. Hu, J.-H. Huang, J. Org. Chem. 2004, 69, 3857-3865.
[12] Y. Wu, X. Shen, Y.-Q. Yang, Q. Hu, J.-H. Huang, Tetrahedron Lett. 2004, 45, 199-202.
[13] Modified from procedure of: V. Hickmann, A. Kondoh, B. Gabor, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2011, 133, 13471-13480.
[14] P. Persich, J. Llaveria, R. Lhermet, T. de Haro, R. Stade, A. Kondoh, A. Fürstner, Chem. Eur. J. 2013, 19, 13047-13058.
[15] E. Bartmann, B. Bogdanović, N. Janke, S. Liao, K. Schlichte, B. Spliethoff, J. Treber, U. Westeppe, U. Wilczok, Chem. Ber. 1990, 123, 1517-1528.
[16] E. J. Corey, S. Shibata, R. K. Bakshi, J. Org. Chem. 1988, 53, 2861-2863.

mz28023.11.fid
FUM-FA-078-01
$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\sim}{\sim}} \stackrel{\sim}{\sim}$

m 1 (ppm)

[^1]

[^2]

at28068.11.fid
FUM-FB-73-04

 f1 (ppm)

 1 (ppm)

[^0]: 1 For a previous report on the X-ray structure of brefeldin A, see: H. P. Weber, D. Hauser, H. P. Sigg, Helv. Chim. Acta 1971, 54, 2763-2766.

[^1]: f1 (ppm)

[^2]: f1 (ppm)

